ECCC – Electronic Colloquium on Computational Complexity
Homepage of the Electronic Colloquium on Computational Complexity located at the Weizmann Institute of Science, Israel
ECCC – Electronic Colloquium on Computational Complexity
Homepage of the Electronic Colloquium on Computational Complexity located at the Weizmann Institute of Science, Israel
Note | |
Type(s) | Internet |
Langue(s) | Anglais |
Villes(s) | Trier |
Catégorie(s) | Mathématiques / Sciences et Techniques |
Courriel | |
Site Web | Visiter |
The Parameterized Inapproximability Hypothesis (PIH), which is an analog of the PCP theorem in parameterized complexity, asserts that, there is a constant $\varepsilon> 0$ such that for any computable function $f:\mathbb{N}\to\mathbb{N}$, no $f(k)\cdot n^{O(1)}$-time algorithm can, on input a […]
The class $ACC$ consists of Boolean functions that can be computed by constant-depth circuits of polynomial size with $AND, NOT$ and $MOD_m$ gates, where $m$ is a natural number. At the frontier of our understanding lies a widely believed conjecture asserting that $MAJORITY$ does not belong to […]
Let $X=X_1\sqcup X_2\sqcup\ldots\sqcup X_k$ be a partitioned set of variables such that the variables in each part $X_i$ are noncommuting but for any $i\neq j$, the variables $x \in X_i$ commute with the variables $x' \in X_j$. Given as input a square matrix $T$ whose entries are linear forms over […]
Propositional proof complexity deals with the lengths of polynomial-time verifiable proofs for Boolean tautologies. An abundance of proof systems is known, including algebraic and semialgebraic systems, which work with polynomial equations and inequalities, respectively. The most basic algebraic […]
Lifting theorems are theorems that bound the communication complexity of a composed function $f\circ g^{n}$ in terms of the query complexity of $f$ and the communication complexity of $g$. Such theorems constitute a powerful generalization of direct-sum theorems for $g$, and have seen numerous […]
The notion of query-to-communication lifting theorems is a generic framework to convert query lower bounds into two-party communication lower bounds. Though this framework is very generic and beautiful, it has some inherent limitations such as it only applies to lifted functions. In order to […]
The Stepanov-Bombieri proof of the Hasse-Weil bound also gives non-trivial bounds on the bias of character sums over curves with small genus, for any low-degree function $f$ that is not completely biased. For high genus curves, and in particular for curves used in AG codes over constant size […]
We give improved lower bounds for binary $3$-query locally correctable codes (3-LCCs) $C \colon \{0,1\}^k \rightarrow \{0,1\}^n$. Specifically, we prove: (1) If $C$ is a linear design 3-LCC, then $n \geq 2^{(1 - o(1))\sqrt{k} }$. A design 3-LCC has the additional property that the correcting sets […]
Information complexity is one of the most powerful tools to prove information-theoretical lower bounds, with broad applications in communication complexity and streaming algorithms. A core notion in information complexity analysis is the Shannon entropy. Though it has some convenient properties, […]
Relaxations for the constraint satisfaction problem (CSP) include bounded width, linear program (LP), semidefinite program (SDP), afinfe integer program (AIP), and the combined LP+AIP of Brakensiek, Guruswami, Wrochna, and Živný (SICOMP 2020). Tightening relaxations systematically leads […]